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Abstract Background: There is epidemiological evidence that cardiovascular risk factors (CVRF) also
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are risk factors for Alzheimer’s disease, but there is limited information on this from neuro-
pathological studies, and even less from in vivo studies. Therefore, we examined the relation-
ship between CVRF and amyloid-b (Ab) brain burden measured by Pittsburgh Compound
B-positron emission tomography (PiB-PET) studies in the Alzheimer’s Disease Neuroimaging
Initiative.
Methods: Ninety-nine subjects from the Alzheimer’s Disease Neuroimaging Initiative cohort who
had a PiB-PET study measure, apolipoprotein E genotyping data, and information available on
CVRF (body mass index [BMI], systolic blood pressure, diastolic blood pressure [DBP], and choles-
terol and fasting glucose test results) were included. Eighty-one subjects also had plasma cortisol,
C-reactive protein, and superoxide dismutase 1 measurements. Stepwise regression models were
used to assess the relation between the CVRF and the composite PiB-PET score.
Results: The first model included the following as baseline variables: age, clinical diagnosis, number
of apolipoprotein 34 alleles, BMI (P 5 .023), and DBP (P 5 .012). BMI showed an inverse relation
with PiB-PET score, and DBP had a positive relation with PiB-PET score. In the second adjusted
model, cortisol plasma levels were also associated with PiB-PET score (P 5 .004). Systolic blood
pressure, cholesterol, or impaired fasting glucose were not found to be associated with PiB-PET
values.
Conclusion: In this cross-sectional study, we found an association between Ab brain burden
measured in vivo and DBP and cortisol, indicating a possible link between these CVRF and Ab bur-
den measured by PiB-PET. These findings highlight the utility of biomarkers to explore potential
pathways linking diverse Alzheimer’s disease risk factors.
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1. Introduction

Dementia is the fourth highest cause of loss of
disability-adjusted life years in high-income countries
[1], with a projected 300% prevalence increase over
eserved.
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the first half of this century [2]. Alzheimer’s disease (AD)
is the most common cause of dementia, but it is
frequently accompanied by vascular pathology, especially
with increasing age, as shown by postmortem studies [3].
No preventive or disease-modifying treatment for AD is
available presently, but if measures are undertaken to
reduce the exposure to modifiable risk factors (RF), the
incidence and prevalence of AD could, in theory, be
reduced [2].

We now know that pathological hallmarks of AD begin
to appear decades before symptom onset [4], and long be-
fore the dementia stage is reached, there is a preclinical
phase of many years’ duration, during which the two signa-
ture lesions of AD—amyloid-b (Ab) deposits and fibrillar
tau lesions—progressively accumulate in the brain [5,6].
Therefore, many RF could exert their effects at stages
in the life span when AD pathology progressively
accumulates, but well before symptom onset. Many of
these RF were previously acknowledged as cardiovascular
risk factors (CVRF), but there is also evidence that
hypertension [7,8], obesity [9], and diabetes [8,10,11]
increase the risk of AD. Many conflicting reports of AD
RF have been published, and the discrepancies may be
a result of many methodological issues [12], including
the fact that the effects of RF might differ based on the
age of individuals [13]. For example, in the case of dia-
stolic blood pressure (DBP), high levels at midlife [7]
and low levels at advanced age both act as RF for dementia
[14,15]. High cholesterol levels in midlife have also been
associated with increased risk for AD, and a decrease in
cholesterol levels after midlife has been described as
a risk marker for dementia [16]. Further, it is important
to consider that part of this effect could be attributed to ge-
netic and early-life environmental factors that contribute to
the linkage between RF and AD [17]. As CVRF can be
treated with drugs that are already available, the incidence
of AD could be reduced if treatments and adequate lifestyle
changes are implemented and started at midlife [18], as
pointed out by some observational studies [8,19]. These
epidemiological findings have not been accompanied by
studies of the association between CVRF and biomarker
measurements that ascertain the burden of Ab deposits or
Ab load. Further, cortisol levels have been related to
worse cognitive scores and clinical outcomes [20,21], and
they show an inverse correlation with hippocampal
volume [21]. This has led to the hypothesis that increased
glucocorticoid exposure promotes hippocampal damage
and even AD neuropathology [22]. Therefore, we studied
the relationship between body mass index (BMI), systolic
blood pressure (SBP), DBP, altered fasting glucose,
plasma levels of cortisol and acute-phase proteins, and
Ab burden, as measured by Pittsburgh Compound
B-positron emission tomography (PiB-PET) studies, in sub-
jects from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI).
2. Methods

2.1. Subjects

The ADNI is a large, multicenter, longitudinal neuroi-
maging study that was launched in 2004 by the National
Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Adminis-
tration, private pharmaceutical companies, and nonprofit
organizations. ADNI 1 consists of 819 adult subjects—
229 cognitively normal (CN), 398 with mild cognitive im-
pairment (MCI), and 192 with AD. Of these subjects, we
included 22 CN, 51 MCI, and 26 AD subjects who had at
least one PiB-PET measure. Participants in ADNI undergo
baseline and periodic physical and neurologic examina-
tions and standardized neuropsychological assessments,
and they provide biological samples (blood, urine,
and, in a subset, cerebrospinal fluid) throughout the study.
Physical examination includes measurements of height,
weight, SBP, and DBP. BMI was calculated as weight
(kg) divided by the square of height (m). Imaging
(magnetic resonance imaging and, for a subset, fluoro-
deoxyglucose PET and PiB-PET) is performed at baseline
and at regular intervals thereafter, as reviewed previ-
ously [23,24] (http://www.adni-info.org/index). All AD
subjects met National Institute of Neurological and
Communicative Diseases and Stroke/Alzheimer’s Disease
and Related Disorders Association criteria for probable
AD, with a Mini-Mental State Examination score between
20 and 26, a global clinical dementia rating of 0.5 or 1,
and a sum of boxes clinical dementia rating of 1.0 to
9.0, and were therefore mildly impaired. Inclusion criteria
for amnestic MCI subjects include a Mini-Mental State
Examination score of 24 to 30 and a Memory Box score
of at least 0.5. Further details on the ADNI cohort can
be found at http://www.adni-info.org/index. Exclusion cri-
teria include any serious neurological disease other than
possible AD, history of brain lesions or head trauma, or
psychoactive medication use (including antidepressants,
neuroleptics, chronic anxiolytics, or sedative hypnotics).
Subjects had to have a Hachinski Ischemic Score of �4
and good general health with no diseases precluding en-
rollment in ADNI. The selection criteria and methodology
have been extensively described by Petersen et al [25] and
are available at http://www.adni-info.org/index.

Subjects were classified based on fasting glucose levels as
not altered (,100 mg/dL) or impaired (�100 mg/dL) ac-
cording to criteria of the American Diabetes Association
[26]. Fasting glucose measures were available for only
66.7% of the sample.
2.2. Apolipoprotein E genotyping

Apolipoprotein E (APOE) genotyping was performed us-
ing TaqMan polymerase chain reaction assays, as described
previously [27].

http://www.adni-info.org/index
http://www.adni-info.org/index
http://www.adni-info.org/index


J.B. Toledo et al. / Alzheimer’s & Dementia 8 (2012) 483–489 485
2.3. Plasma measurements

Plasma was prepared from blood samples collected from
each study subject, following an overnight fast, at each visit
scheduled in the ADNI protocol. At each scheduled visit,
blood samples were collected into two 10-mL ethylenedia-
minetetraacetic acid Vacutainer tubes (BD, Franklin Lakes,
NJ), followed by centrifugation, within 1 hour, at 1500 RCF
at room temperature. The plasma was transferred into a la-
beled 14-mL polypropylene transfer tube, which was then
capped, placed on dry ice, and shipped to the UPenn Bio-
marker Core laboratory. Aliquots (0.5 mL), prepared from
plasma samples after thawing at room temperature, were
stored in labeled polypropylene aliquot tubes at280�C until
the day of testing. In the morning on the day of testing, the
plasma samples were thawed at room temperature.

C-reactive protein (CRP), cortisol, and superoxide
dismutase 1 (SOD1) levels were measured in plasma sam-
ples taken at baseline and at 12 months by Rules-Based
Medicine, Inc. (RBM, Austin, TX) using the multiplex
Human DiscoveryMAP panel and a Luminex xMAP plat-
form (for additional information, refer to http://www.
rulesbasedmedicine.com).
2.4. Pittsburgh Compound B-positron emission
tomography

ADNI PiB-PET studies were performed at 14 different
sites, where the production and radiolabeling of PiB were
performed as outlined previously by Mathis et al [28]. The
ADNI PiB-PET images underwent several quality control
and standardization steps. Regional assessment of the PiB-
PET data involved sampling 13 different brain areas using
an automated region-of-interest template method, and stan-
dardized uptake value ratios (SUVRs) were calculated as
in Jagust et al [29]. A PiB retention summary measure was
Table 1

Baseline characteristics of participants according to their clinical status at baselin

Features

CN

PiB-PET (n 5 22)

Age (years) 75.8 (6.1)

Gender (male %) 63.6%

Ethnicity (% Caucasian) 90.9%

MMSE 28.8 (1.6)

APOE 34 (% with at least one copy) 27.3%

BMI 27.6 (3.5)

SBP (mmHg) 134.7 (15.9)

DBP (mmHg) 74.3 (8.2)

Cholesterol (mg/dL) 189.0 (6.4)

Altered fasting glucose 65%

Cortisol (ng/mL) 142 (114.5–189.7)

CRP (mg/mL) 1.2 (0.42–1.7)

SOD1 (ng/mL) 40.0 (30.0–73.0)

Abbreviations: AD, Alzheimer’s disease; BMI, body mass index; CN, cognitive

cognitive impairment; MMSE, Mini-Mental State Examination; PiB-PET, Pittsbu

sure; SOD1, superoxide dismutase 1.

Mean (standard deviation), except in BMI, CRP, SOD1, and cortisol: median (
formed by combining anterior cingulated cortex, lateral tem-
poral cortex, precuneus, parietal cortex, and frontal cortex
region-of-interest values for each subject, obtaining the
mean value.

2.5. Statistical analysis

The normal distribution of the variables was tested and, in
case of non-normal distributions, logarithmic transforma-
tions were applied (in BMI, CRP, SOD1 and cortisol data
sets). A baseline regression model that included age, ApoE
genotype, clinical diagnostic category, BMI, SBP, DBP,
and fasting glucose group as independent variables and
PiB summary score as dependent variable was established
and backward elimination was applied. In a stepwise fash-
ion, nonsignificant CVRF variables were excluded until
only significant variables were included in the model. Con-
founding effects were also taken into account. Owing to the
presence of bivariate outliers on replot representation, an
MM-estimator-based multivariate resistant regression was
performed [30,31]. The relationship between cortisol and
PiB summary score was studied in another multiple linear
regression model adjusted for age, clinical diagnosis, and
ApoE genotype. Spearman correlation was used to assess
the correlation between CRP, SOD1, and PiB summary
score. Analysis of variance and c

2 tests were applied for
comparisons between groups, as presented in Table 1.
3. Results

Baseline characteristics of the clinical groups are summa-
rized in Table 1. The three groups only differed in cognitive
scores and in the percentage of subjects with at least one
copy of an APOE 34 allele. There were differences neither
in the values nor the distribution of the CVRF in the different
diagnostic groups.
e

MCI AD

P valuePiB-PET (n 5 51) PiB-PET (n 5 26)

74.8 (7.6) 73.3 (8.9) .516

66.7% 65.4% .969

96.1% 100% .280

27.43 (1.5) 25.27 (2.2) ,.001

51% 65.4% .030

25.8 (4.1) 26.4 (4.4) .180

135.1 (17.7) 136.9 (16.6) .869

73.7 (9.2) 75.4 (9.8) .725

188.9 (5.7) 204.5 (12.4) .342

50% 50% .527

160 (131.5–190) 149 (132–182) .314

1.3 (0.74–3.0) 0.79 (0.33–1.9) .541

44.5 (32.5–60.0) 48.0 (38.0–74.0) .264

normal; DBP, diastolic blood pressure; CRP, C-reactive protein; MCI, mild

rgh Compound B-positron emission tomography; SBP, systolic blood pres-

interquartile range).
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3.1. CVRF and PiB measurements

We established a model that included age, number of
APOE 34 alleles, clinical diagnosis, BMI, SBP, DBP, and
fasting glucose group (R2 5 0.30). First fasting glucose
group and thereafter SBP were excluded. In the final model
(R2 5 0.36), there was an inverse association between the
logarithm of BMI and PiB composite score (P 5 .023),
with every 1 logarithmic unit change in BMI predicting
21.67 SUVR on the PiB summary score, whereas the asso-
ciation between DBP and PiB composite score was positive,
with increases of 10 mmHg in DBP predicting a 0.144
SUVR higher PiB summary score (P 5 .012). There was
no interaction between APOE 34 alleles and the statistically
significant CVRF. The predicted regression slopes of a CN
subject with zero copies of APOE 34, an MCI subject with
one copy of APOE 34, and an AD subject with one copy
of APOE 34 are represented in Figure 1A (DBP) and B
(BMI).

In the adjusted multivariate regression model, there was
a positive association between plasma cortisol levels and
PiB scores (P 5 .004), with every log increment of cortisol
being associated with an increase of 1 SUVR PiB summary
score (Figure 2).

3.2. PiB correlations with CRP and SOD1

No correlation was found between the PiB summary
score and CRP and SOD1 (PCRP 5 .158, rCRP 5 2.158;
PSOD1 5 .569 and rSOD1 5 .064).
4. Discussion

This study confirms a relationship in vivo between one
CVRF (DBP) and one marker of established disease (BMI)
with brain Ab burden measured by PiB-PET studies. Plasma
cortisol levels also positively correlated with PiB scores. Our
Fig. 1. Scatterplot with predicted robust regression slope for subjects with median

nitively normal (CN) with no apolipoprotein E (APOE) 34 alleles, mild cognitive im

(AD) subjects with one APOE 34 allele. Values for CN subjects are represente

(A) Diastolic blood pressure and Pittsburgh Compound B (PiB)-positron emission t
study shows that, in agreement with epidemiological evi-
dence, there is a link between CVRF and a biomarker of
Ab deposition, namely PiB-PET scores. One previous study
has reported a difference in weight based on the CSF signa-
ture according to previously reported epidemiological data
[32]. To our knowledge, no other study has assessed the re-
lationship of CVRF and AD in vivo, and there are only lim-
ited neuropathological studies reporting this association
[33,34]. The inverse correlation between BMI and PiB-
PET score measures could reflect the loss of weight that oc-
curs in preclinical stages of AD [11,32,35,36].

The increasing trend of dementia incidence attributable to
CVRF has been explained either by the additive effect of ce-
rebrovascular pathology and AD pathology lowering the
threshold for clinical symptoms [37,38] or by CVRF
enhancing the underlying neurodegenerative process.
Given the association between intracranial atherosclerosis
and dementia in neuropathological studies [39], and the in-
crease of Ab deposition caused by oligemia and hypoxia,
it is possible that these CVRFmay contribute to mechanisms
underlying AD [37–41]. Our study indicates that DBP may
mediate cognitive deficits that are not only due to
microvasculature damage but also due to Ab deposition
[13,42–46]. One explanation for finding only an
association with DBP can be that the blood pressure
decrease that occurs at presymptomatic stages of AD
mainly affects SBP [13], and that DBP changes are not so af-
fected by disease evolution [44], so that in the regression
model SBP does not add any additional information to
DBP. Another possible explanation is that the endothelial
dysfunction is more dependent on DPB at older ages.

The absence of an increased burden of Ab burden in sub-
jects with fasting glucose impairment is consistent with pre-
vious neuropathological studies [47] and animal models that
described increased cerebrovascular changes without an in-
crease of amyloid burden [48].
age and vascular risk factor values, and representing subjects who are cog-

pairment (MCI) subjects with one APOE 34 allele, and Alzheimer’s disease

d with triangles, MCI subjects with crosses, and AD cases with squares.

omography composite score. (B) Body mass index and PiB composite score.



Fig. 2. Scatterplot with predicted regression slopes for subjects withmedian

age representing CN subjects with no APOE 34 alleles, MCI subjects with

one APOE 34 allele, and AD subjects with one APOE 34 allele. Values for

CN subjects are represented with triangles, MCI subjects with crosses,

and AD cases with squares.
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Cortisol has been related to Ab deposition and memory
deficits in normal transgenic mice [49,50] and to
hippocampal atrophy in human brain magnetic resonance
imaging studies [21]. This study confirms the relation be-
tween cortisol and brain Ab deposition in human subjects.

No correlation was found between acute-phase proteins
and PiB scores. This is in agreement with a recent imaging
and autopsy study that found no correlation between amarker
of activated microglia (3H-PK11195) and PiB-PET scores
[51], whereas the results of in vivo studies are conflicting
[52–54]. In the autopsy study, a correlation with number of
glial fibrillary acidic protein immunoreactive cells was
found, indicating a relation with astrocytosis [51]. Larger
studies with patients at different stages of AD might be nec-
essary to assess whether inflammation is present only at cer-
tain stages of the disease.

We did not find an association between cholesterol levels
and PiB-PET score. One reason is that at stages where the
disease is already symptomatic, the presence of hyperten-
sion still predicts further greater cognitive decline, whereas
there is no association with the presence of hypercholester-
olemia [45]. Another reason can be the distribution of cho-
lesterol levels among the different diagnostic groups.
Although not statistically significant, cholesterol levels
were higher in our AD group, which is in disagreement
with cross-sectional and longitudinal studies performed at
late life [55,56].
One of the difficulties in longitudinal epidemiological
studies is to discern the underlying pathology or pathologies.
Not all studies confirm the causal link between hypertension
and AD [57]. With aging, mixed dementia increases in large
autopsy series [3]. Therefore, the use of imaging techniques
that distinguish the presence of the different substrates that
can account for cognitive decline becomes crucial.

Our study has several strengths, such as the detailed clin-
ical and biomarker characterization of the sample as well as
the standardized protocols applied in ADNI. However, there
are also some weaknesses inherent to this study, including
the exclusion criteria used in ADNI, which prevented sub-
jects with severe vascular disease from entering the study,
and therefore subjects with serious vascular events are not
represented in the ADNI cohort. Besides this, the skewed
representation of the most impaired cases of MCI with
lack of patients in early stages is a further limitation, because
the complete spectrum of the continuum between subjects
with no underlying neurodegenerative disease and subjects
with AD neuropathology in a dementia stage could not be
represented. Finally, this study represents a cross-sectional
analysis that does not allow establishing whether the loss
of weight represents an effect of the disease evolution and
whether the DBP increases Ab deposition in the brain.

In conclusion, our study favors the hypotheses of an asso-
ciation between DBP and cortisol and the amyloid cascade,
and it underlines the utility of biomarkers not only as a diag-
nostic tool but also as a means to study the course and etiol-
ogy of AD in vivo.
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